Abstract

Epilepsy involves brain abnormalities that may cause sudden seizures or other uncontrollable body activities. Epilepsy may have substantial impacts on the patient's quality of life, and its detection heavily relies on tedious and time-consuming manual curation by experienced clinicians, based on EEG signals. Most existing EEG-based seizure detection algorithms are patient-dependent and train a detection model for each patient. A new patient can only be monitored effectively after several episodes of epileptic seizures. This study investigates the patient-independent detection of seizure events using the open dataset CHB-MIT Scalp EEG. First, a novel feature extraction algorithm called MinMaxHist is proposed to measure the topological patterns of the EEG signals. Following this, MinMaxHist and several other feature extraction algorithms are applied to parameterize the EEG signals. Next, a comprehensive series of feature screening and classification optimization experiments are conducted, and finally, an optimized EEG-based seizure detection model is presented that can achieve overall values for accuracy, sensitivity, specificity, Matthews correlation coefficient, and Kappa of 0.8627, 0.8032, 0.9222, 0.7504 and 0.7254, respectively, with only 30 features. The classification accuracy of the method with MinMaxHist features was 0.0464 higher than that without MinMaxHist features. Compared with existing methods, the proposed algorithm achieved higher accuracy and sensitivity, as shown in the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.