Abstract

Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority.

Highlights

  • IntroductionThe deteriorating state of the environment influences the health of the human population, which is reflected in the growing number of deaths

  • Human health and the health of ecosystems are inextricably linked

  • In experiments conducted by Pawlik et al [24], more than 90% of isolates obtained from Lotus corniculatus L. and Oenothera biennis L. grown in long-term petroleum hydrocarbons (PHC)-polluted sites and classified to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus were confirmed to be able to utilize diesel oil as a carbon source

Read more

Summary

Introduction

The deteriorating state of the environment influences the health of the human population, which is reflected in the growing number of deaths. According to the new Report No 9/2020 from the EU environment agency (EEA), already one in every eight deaths in Europe can be linked to pollution [1]. Hazardous xenobiotics are usually recalcitrant to degradation and, due to the long-range transboundary migration, can be accumulated in the environment far from the sources of their emission [2]. Xenobiotics posing a public health hazard are a very diverse group of functional substances, e.g., pharmaceutical compounds, personal care products, pesticides, polycyclic aromatic hydrocarbons (PAHs), or textile dyes. Most of them represent persistent organic pollutants (POPs) and, despite the great removal effort, many of these substances persist in the environment as micropollutants affecting human health. The main source of their intake is inhalation with air or consumption of contaminated edible plants and meat coming from animals fed with polluted crops

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call