Abstract

The importance of raw material and extraction parameters for obtaining a high content of flavonoids and phenolic acids in elderflower extracts was investigated. Nine phenolic acids (3-O-, 4-O-, and 5-O-caffeoylquinic acid, 3-O- and 5-O-p-coumaroylquinic acid, 1,5-di-O-, 3,4-di-O-, 3,5-di-O- and 4,5-di-O-caffeoylquinic acid) and six flavonol glycosides (quercetin-3-O-rutinoside, quercetin-3-O-glucoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, and quercetin-3-O-6″-acetylglucoside) were identified and quantified in elderflowers and/or extracts thereof by liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography-diode array detection (HPLC-DAD), respectively. The yield of elderflower extracts depended significantly on processing conditions and raw material properties and the maximum yield of elderflower extract was obtained by extraction for a maximum of 10 days at 4 °C using an extraction liquid consisting of a maximum of 20 w/w % sugars and 5% citric acid. The effects of the extraction liquid composition and raw material on the concentration of phenolic acids and flavonol glycosides in elderflower extracts were determined by factor analysis. Several elderberry genotypes were found to be useful for processing of elderflower extracts with a relative high concentration of phenolic acids and flavonol glycosides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.