Abstract
The frequency of base-pair occurrence in a set of recognition sequences for a particular DNA-binding protein is strongly related to the contributions to the binding free energy from the individual base pairs. Thus from the statistics of base-pair choice, it is possible to estimate the relative binding strengths of any base-pair sequences and to predict the effect of point mutations in specific sites. On the same basis, one can describe the binding properties of random DNA sequences and thereby the expected competitive effects from all the nonspecific DNA sites in the genome of a living cell. The statistical selection theory [Berg & von Hippel.J. Mol. Biol. 193 (1987) 723-750] describing these relations is extended and tested with computer simulations. The theory is shown to hold up well also in the case when base pairs contribute cooperatively to the binding interaction. The simulations also demonstrate the effects of the statistical small-sample uncertainty that appears due to the limited size of all sets of recognition sites identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.