Abstract
Xylanases are a group of enzymes that catalyze the hydrolysis of xylan. Xylanases have wide industrial applications, and they can produced by various organisms. In this study, we aimed to develop aptamers for the capture of xylanase produced by a wild-type Aspergillus niger strain. Xylanase was produced by Aspergillus niger in a 5-liter stirred-tank bioreactor and then purified by column chromatography. Magnetic bead-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) was performed to select DNA aptamers specific to the purified xylanase. After nine rounds of selection, next-generation sequencing (NGS) analysis was performed. Four aptamers, namely AXYL-1, AXYL-2, AXYL-3, and AXYL-4, were identified for further characterization. The binding properties of the selected aptamers were characterized by fluorescence quenching (FQ) analysis and an enzyme-linked aptamer assay (ELAA). The Kd values were found to be in the low μM range. Then, each aptamer was immobilized on streptavidin-coated magnetic particles, and the recovery ratio of xylanase was determined. Although AXYL-1 wasn't effective, AXYL-2, AXYL-3, and AXYL-4 were proven to capture the xylanase. The maximum recovery rate of xylanase was found to be approximately 54 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.