Abstract
Agricultural biosensing can aid decisions about crop health and maintenance, because crops release root exudates that can inform about their status. l-Serine has been found to be indicative of nitrogen uptake in wheat and canola. The development of a biosensor for l-serine could allow farmers to monitor crop nutrient demands more precisely. The development of robust l-serine-binding DNA aptamers is described. Because small molecules can be challenging targets for Systematic Evolution of Ligands by EXponential enrichment (SELEX), three separate DNA libraries were used for SELEX experiments. A l-homocysteine aptamer was randomized to create a starting library for a l-serine selection (randomized SELEX). The final selection rounds of the l-homocysteine selection were also used as a starting library for l-serine (redirected SELEX). Finally, an original DNA library was used (original SELEX). All three SELEX experiments produced l-serine-binding aptamers with micromolar affinity, with Red.1 aptamer having a Kd of 7.9 ± 3.6 μM. Truncation improved the binding affinity to 5.2 ± 2.7 μM, and from this sequence, a Spiegelmer with improved nuclease resistance was created with a Kd of 2.0 ± 0.8 μM. This l-serine-binding Spiegelmer has the affinity and stability to be incorporated into aptamer-based biosensors for agricultural applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.