Abstract

The brilliant cresyl blue (BCB) test determines the activity of glucose-6-phosphate dehydrogenase (G6PDH); the activity of this enzyme is greatest in growing oocytes, but it declines as oocytes mature. The objective was to develop and evaluate this test for assessing development of buffalo oocytes (to select developmentally competent oocytes for increased in vitro embryo production). Oocytes were exposed to BCB stain diluted in mDPBS (DPBS with 0.4% BSA) for 90 min at 38.5 degrees C in a humidified air atmosphere; those with or without blue coloration of the cytoplasm were designated as BCB+ and BCB-, respectively. In Experiment 1, oocytes were exposed to 13, 26, or 39 microM BCB. There were fewer BCB+ oocytes after exposure to 13 microM BCB (10%) than after exposure to 26 or 39 microM BCB (57.2 and 61.8%; P<0.05), but there was no significant difference among treatments for blastocyst production rate. In Experiment 2, the diameter of BCB+ oocytes (144.4+/-4.2 microm; mean+/-S.E.M.) was higher (P<0.05) than that of BCB- oocytes (136.8+/-4.6 microm). In Experiment 3, oocytes were allocated into three groups: control (immediately cultured); holding-control (kept in mDPBS for 90 min before cultured); and treatment-incubation (incubated with 26 microM BCB). After IVM, oocytes were fertilized in vitro and cultured on an oviductal monolayer. The nuclear maturation rate was higher (P<0.05) in BCB+ (86.2%), control (83.4%) and holding-control (82.6%) oocytes than BCB- (59.2%) oocytes. The BCB+ oocytes yielded more blastocysts than control or holding-control oocytes (33.4, 20.2, and 21.0%, P<0.05); blastocyst development was lowest in BCB- oocytes (5.2%). In conclusion, staining of buffalo oocytes with BCB before IVM may be used to select developmentally competent oocytes for increased in vitro embryo production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.