Abstract
BackgroundRecent advances in time-lapse monitoring in IVF treatment have provided new morphokinetic markers for embryonic competence. However, there is still very limited information about the relationship between morphokinetic parameters, chromosomal compositions and implantation potential. Accordingly, this study aimed at investigating the effects of selecting competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing on pregnancy and implantation outcomes for patients undergoing preimplantation genetic screening (PGS).MethodsA total of 1163 metaphase II (MII) oocytes were retrieved from 138 PGS patients at a mean age of 36.6 ± 2.4 years. These sibling MII oocytes were then randomized into two groups after ICSI: 1) Group A, oocytes (n = 582) were cultured in the time-lapse system and 2) Group B, oocytes (n = 581) were cultured in the conventional incubator. For both groups, whole genomic amplification and array CGH testing were performed after trophectoderm biopsy on day 5. One to two euploid blastocysts within the most predictive morphokinetic parameters (Group A) or with the best morphological grade available (Group B) were selected for transfer to individual patients on day 6. Ongoing pregnancy and implantation rates were compared between the two groups.ResultsThere were significant differences in clinical pregnancy rates between Group A and Group B (71.1% vs. 45.9%, respectively, p = 0.037). The observed implantation rate per embryo transfer significantly increased in Group A compared to Group B (66.2% vs. 42.4%, respectively, p = 0.011). Moreover, a significant increase in ongoing pregnancy rates was also observed in Group A compared to Group B (68.9% vs. 40.5%. respectively, p = 0.019). However, there was no significant difference in miscarriage rate between the time-lapse system and the conventional incubator (3.1% vs. 11.8%, respectively, p = 0.273).ConclusionsThis is the first prospective investigation using sibling oocytes to evaluate the efficiency of selecting competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for PGS patients. Our data clearly demonstrate that the combination of these two advanced technologies to select competent blastocysts for transfer results in improved implantation and ongoing pregnancy rates for PGS patients.
Highlights
Recent advances in time-lapse monitoring in IVF treatment have provided new morphokinetic markers for embryonic competence
There is no consensus on the best way to determine the competency of human embryos derived from in vitro fertilization or to select the most competent embryos for transfer despite the recent advances in both invasive and non-invasive techniques. In response to this challenge, our current study explores the use of both time-lapse monitoring and array CGH testing to select competent blastocysts for transfer in order to improve pregnancy and implantation rates for preimplantation genetic screening (PGS) patients
A total of 1163 metaphase II (MII) oocytes were retrieved from 138 PGS patients at a mean age of 36.6 ± 2.4 years. 126 (9.8%) of the retrieved oocytes at germinal vesicle (GV) and/or metaphase I (MI) stages were excluded before randomization. 1163 (90.2%) oocytes at metaphase II (MII) stage were randomized into two groups after ICSI: 1) Group A, the microinjected oocytes (n = 582) were cultured in the time-lapse system, and 2) Group B, the microinjected oocytes (n = 581) were cultured in the conventional incubator (Figure 1)
Summary
Recent advances in time-lapse monitoring in IVF treatment have provided new morphokinetic markers for embryonic competence. An increasing number of studies have concentrated on developing more advanced technologies, both invasive and non-invasive, to select the most competent embryos with the highest potential of implantation for transfer. The original non-invasive technique, morphological grading has long been a primary method of evaluating and selecting embryos for transfer [1,2,3]. Traditional procedures for embryo evaluation and selection are based on the morphological characteristics observed with a microscope at several discrete time points of embryonic development. There are obvious shortcomings with traditional methods of evaluation and selection of embryos for transfer based on morphological characteristics alone [11,12,13,14]. When embryos are evaluated under a microscope in an uncontrolled environment, they may suffer from undesirable shock or stress due to sudden changes in known critical parameters including temperature, oxygen concentration and pH [15,16,17,18,19]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.