Abstract

DNA-encoded chemical libraries, i.e., collections of compounds individually coupled to distinctive DNA fragments serving as amplifiable identification barcodes, represent a new tool for the de novo discovery of small molecule ligands to target proteins of pharmaceutical interest. Here, we describe the design and synthesis of a novel DNA-encoded chemical library containing one million small molecules. The library was synthesized by combinatorial assembly of three sets of chemical building blocks using Diels-Alder cycloadditions and by the stepwise build-up of the DNA barcodes. Model selections were performed to test library performance and to develop a statistical method for the analysis of high-throughput sequencing data. A library selection against carbonic anhydrase IX revealed a new class of submicromolar bis(sulfonamide) inhibitors. One of these inhibitors was synthesized in the absence of the DNA-tag and showed accumulation in hypoxic tumor tissue sections in vitro and tumor targeting in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call