Abstract

A method of selection of basis functions for the quantum chemical description of atoms and molecules inside spherical and cuboidal cavities is presented. The method consists of two independent steps. First, the appropriate GTO or STO exponents are chosen by fitting the basis functions to cutoff orbitals. The criterion of maximal orbital density inside the cavity is next applied to form the final model orbital space. The method presents the fundamental advantage over many other methods of being trivially applicable in standard quantum chemical progam packages. As an illustration, the method is applied to the hydrogen atom in a spherical box. The use of contracted basis functions is also discussed. © 1996 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.