Abstract
Modelling of composite and reinforced concrete structures requires very precise determination of material parameters and constitutive relations between strain and stress. Erroneous selection of the dependencies and incorrect modelling, in particular, of the performance of concrete in tension may generate results in finite element method programs, that are far from the results obtained in an experiment. Using the example of a concrete damage plasticity model, based on fracture mechanics, this paper describes the physical interpretation and the method of the selection of parameters necessary for the appropriate modelling of concrete in a complex stress state. The correctness of the assumed description of concrete was verified on the basis of results of laboratory tests. A comparative analysis of the experimental and numerical results showed that the application of the concrete damage plasticity model allowed correct determination of the concrete element damage mechanisms for each level of strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.