Abstract

Sexual reproduction occurs in many small eukaryotes by fusion of similar gametes (isogamy). In the absence of distinguishable sperm and eggs, male and female mating types are missing. However, species with distinct males and females have so prospered that almost all familiar plants and animals have these mating types. Why has sexual reproduction involving sperm and eggs been so successful? An answer is obtained by considering physical limitations on encounter rates between gametes. A biophysical model based on well-established relationships produces fitness landscapes for the evolution of gamete size and energy allocation between motility and pheromone production. These landscapes demonstrate that selection for high gamete encounter rates favors large, pheromone-producing eggs and small, motile sperm. Thus, broadcast-spawning populations with males and females can reproduce at lower population densities and survive under conditions where populations lacking males and females go extinct. It appears that physical constraints on gamete encounter rates are sufficient to explain the first two steps in the isogamy→anisogamy→oogamy→internal fertilization evolutionary sequence observed in several lineages of the eukaryotes. Unlike previous models, assumptions concerning zygote fitness or decreasing speed of swimming with increasing gamete size are not required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.