Abstract
Selection during evolution, whether natural or artificial, acts through the phenotype. For multifaceted phenotypes such as plant and inflorescence architecture, the underlying genetic architecture is comprised of a complex network of interacting genes rather than single genes that act independently to determine the trait. As such, selection acts on entire gene networks. Here, we begin to define the genetic regulatory network to which the maize domestication gene, teosinte branched1 (tb1), belongs. Using a combination of molecular methods to uncover either direct or indirect regulatory interactions, we identified a set of genes that lie downstream of tb1 in a gene network regulating both plant and inflorescence architecture. Additional genes, known from the literature, also act in this network. We observed that tb1 regulates both core cell cycle genes and another maize domestication gene, teosinte glume architecture1 (tga1). We show that several members of the MADS-box gene family are either directly or indirectly regulated by tb1 and/or tga1, and that tb1 sits atop a cascade of transcriptional regulators controlling both plant and inflorescence architecture. Multiple members of the tb1 network appear to have been the targets of selection during maize domestication. Knowledge of the regulatory hierarchies controlling traits is central to understanding how new morphologies evolve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.