Abstract

A method for efficient enrichment of protease inhibitors out of a DNA library was developed by introducing SF-link technology. A two-step selection strategy was designed consisting of the initial enrichment of aptamers based on binding function while the second enrichment step was based on the inhibitory activity to a protease, cathepsin E (CE). The latter was constructed by covalently linking of a biotinylated peptide substrate to each of the ssDNA molecule contained in the preliminarily selected DNA library, generating 'SF-link'. Gradual enrichment of inhibitory DNAs was attained in the course of selection. One molecule, SFR-6-3, showed an IC(50) of around 30 nM, a K(d) of around 15 nM and high selectivity for CE. Sequence and structure analysis revealed a C-rich sequence without any guanine and possibly an i-motif structure, which must be novel to be found in in vitro-selected aptamers. SF-link technology, which is novel as the screening technology, provided a remarkable enrichment of specific protease inhibitors and has a potential to be further developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.