Abstract

Parasitoid wasps play a crucial role in the efficient control of pests, a substantial menace to human health and well-being. Tetrastichus hagenowii (Ratzeburg) stands out as the most effective egg parasitoid wasp for controlling American cockroaches, but accurate and stable reference genes for quantitative real-time polymerase chain reaction of T. hagenowii genes are still lacking. In this study, we assessed seven candidate nuclear genes, including α-tubulin (α-TUB), elongation factor-1-alpha (EF-1α), β-actin (Actin), ribosomal protein 49 (RP49), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), nicotinamide adenine dinucleotide (NADH), and elongation factor 2 (EF2) of T. hagenowii. By analyzing expression stability with four algorithms (Delta Ct, geNorm, NormFinder, and BestKeeper), as well as comprehensive ranking with RefFinder, we identified α-TUB as the most stable reference gene for the larval, pupal, female adult, and male adult stages. Subsequently, we estimated the transcript levels of vitellogenin (Vg) and cuticle protein (CP) after normalization with α-TUB across various developmental stages. Significantly higher expression levels of CP and Vg were observed in pupae and female adults, respectively, consistent with previous findings in other insects. This study offers a reliable reference gene for normalizing transcription levels of T. hagenowii genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.