Abstract
To reduce the prediction error rate of earthquake casualties, the paper proposed a prediction model with two steps: (1) screening of the earthquake casualties correlation factors; (2) improving the predictive veracity of general BP(Back Propagation) neural network model.By the analysis of 9 kinds of correlation factors, the paper established the MIV(Mean Impact Value) model based on BP neural network to screen the final correlation factors, and the paper got 6 main correlation factors according to the size of output weights of the factors. Finally, the paper verified the accuracy and practicability of the model through the validation of the model and the solving of prediction error of relevant factors hasn't been selected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.