Abstract

In recent years there is progressive research conducted on modification of textile and nanoparticles for long-lasting performances without compromising the sensorial and non-sensorial comfort. The appropriate finishing treatment of textile is of great concern to impart comfort along with durable multifunctional characters. The main objective of this study was to achieve the durable functionality without compromising the comfort and physical properties of cotton fabric. TiO2 nanoparticles have been modified with two different silane coupling agents such as (3-Glycidoxypropyl)trimethoxysilane (GPTS) and 1,2-Bis(triethoxysilyl)ethane (BTSE) using different concentrations. The modified nanoparticles were characterized using Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) to confirm the modification and fixing of chemicals at the surface. Modified nanoparticles were applied on textile by pad-dry-cure method. The treated cotton fabrics were washed to confirm the adhesion of nanoparticles after several washing cycles. The durable ultraviolet (UV) blocking capabilities were analyzed before and after washing. Then, comfort properties were evaluated and compared to made selection of best silane coupling agent having minimum effect on inherent properties of cotton textiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call