Abstract

Transglycosylation (TG) by Enterobacter cloacae subsp. cloacae chitinase 2 (EcChi2) has been deciphered by site-directed mutagenesis. EcChi2 originally displayed feeble TG with chitin oligomer with a degree of polymerization (DP4), for a short duration. Based on the 3D modelling and molecular docking analyses, we altered the substrate interactions at the substrate-binding cleft, catalytic center, and catalytic groove of EcChi2 by mutational approach to improve TG. The mutation of W166A and T277A increased TG by EcChi2 and also affected its catalytic efficiency on the polymeric substrates. Whereas, R171A had a drastically decreased hydrolytic activity but, retained TG activity. In the increased hydrolytic activity of the T277A, altered interactions with the substrates played an indirect role in the catalysis. Mutation of the central Asp, in the conserved DxDxE motif, to Ala (D314A) and Asn (D314N) conversion yielded DP5-DP8 TG products. The quantifiable TG products (DP5 and DP6) increased to 8% (D314A) and 7% (D314N), resulting in a hyper-transglycosylating mutant. Mutation of W276A and W398A resulted in the loss of TG activity, indicating that the aromatic residues (W276 and W398) at +1 and +2 subsites are essential for the TG activity of EcChi2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.