Abstract

A theoretical proposal to double the pulse repetition frequency by alternating current modulation of two orthogonal high-order transverse modes of a vertical-cavity surface-emitting laser (VCSEL) is presented. Static and dynamic characteristics of weakly index-guided VCSELs in a multitransverse mode regime are analyzed. An efficient model that takes into account all the transverse modes supported by the waveguide is developed. Mode partition noise in a current modulated VCSEL is studied, taking into account the azimuthal degree of freedom. Different transverse modes can be excited with a probability that is numerically calculated. For high injection currents, modes that are not favored in the steady state can be excited with higher probability. The excitation probability is similar for azimuthally orthogonal modes. This symmetry can be broken by selecting a particular high-order transverse mode by using azimuthal-dependent current profiling. This selection can be achieved over current ranges as wide as ten times the threshold current. Current modulation of this transverse mode is then analyzed. Alternate current modulation of two orthogonal high-order transverse modes is also studied. Alternating modulation of these modes can double the pulse repetition frequency obtained by modulating just one high-order transverse mode, without increasing injected current density levels. This current-induced spatial switching leads to high-frequency beam steering in the laser azimuthal direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call