Abstract

BackgroundMesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica.ResultsAnalyses of two mitochondrial genes and ten microsatellite loci genotyped for 160 individuals revealed the presence of three lineages with no contemporary gene flow: C. c. curvipennis, C. c. excellens, and C. c. pampa disjunctly distributed in the Sierra Madre Oriental, the Tuxtlas region and the Yucatan Peninsula, respectively. Sequence mtDNA and microsatellite data were congruent with two diversification events: an old vicariance event at the Isthmus of Tehuantepec (c. 1.4 Ma), and a more recent Pleistocene split, isolating populations in the Tuxtlas region. Hummingbirds of the excellens group were larger, and those of the pampa group had shorter bills, and lineages that have been isolated the longest shared fewer syllables and differed in spectral and temporal traits of a shared syllable. Coalescent simulations showed that fixation of song types has occurred faster than expected under neutrality but the null hypothesis that morphological divergence resulted from drift was not rejected.ConclusionsOur phylogeographic analyses uncovered the presence of three Mesoamerican wedge-tailed sabrewing lineages, which diverged at different time scales. These results highlight the importance of the Isthmus of Tehuantepec and more recent Pleistocene climatic events in driving isolation and population divergence. Coalescent analyses of the evolution of phenotypic traits suggest that selection is driving song evolution in wedge-tailed sabrewings but drift could not be rejected as a possibility for morphological divergence.

Highlights

  • Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa

  • Assuming a constant molecular clock and rates of 2 and 5% divergence per My, for the ATPase coding region BEAST estimated that the subspecies: Campylopterus curvipennis curvipennis (SMO) and TUX clades diverged from the YUC clade 1.47 (0.35-3.42) and 0.52 (0.13-1.21) Mya, respectively. These results suggest that the split between the Sierra Madre Oriental and Yucatan Peninsula clades may have occurred during the midPleistocene

  • The genetic and phylogeographic analyses of this study, based on mtDNA and microsatellites, uncover the presence of three lineages of Mesoamerican wedge-tailed sabrewings that exhibit no contemporary gene flow. These correspond to the disjunct distribution of populations at the Sierra Madre Oriental, the Tuxtlas region, and the Yucatan Peninsula

Read more

Summary

Introduction

Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. The wedge-tailed sabrewing (Campylopterus curvipennis), a sexually monochromatic, size dimorphic hummingbird species complex commonly found in montane cloud forests and humid tropical forests [15], offers an excellent system for addressing questions about historical biogeography and speciation of Mesoamerican biota It is one of the few hummingbird species known for both the lowlands and montane region with a geographical disjunction at the Isthmus of Tehuantepec [15]: populations in the foothills of the Atlantic slope of the Sierra Madre Oriental (from south Tamaulipas to north Oaxaca) (SMO), and the Tuxtlas region (Sierra de los Tuxtlas and Sierra de Santa Marta) and a small area on the Isthmus of Tehuantepec (Jesús Carranza and Uxpanapa) (TUX), are separated from those found from northeastern Chiapas to central-south of the Yucatan Peninsula (YUC) (Table 1) [15]. Their complex syllable structure exhibits geographic variation that ranges from differences between neighboring males within a lek to differences between lek members separated by several kilometers [18,19]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.