Abstract

In the literature, we find several criteria that consider different aspects of the program to guide the testing, a fundamental activity for software quality assurance. They address two important questions: how to select test cases to reveal as many fault as possible and how to evaluate a test set T and end the test. Fault-based criteria, such as mutation testing, use mutation operators to generate alternatives for the program P being tested. The goal is to derive test cases capable of producing different behaviors in P and its alternatives. However, this approach usually does not allow the test of interaction between faults since the alternative differs from P by a simple modification. This work explores the use of Genetic Programming (GP), a field of Evolutionary Computation, to derive alternatives for testing P and introduces two GP-based procedures for selection and evaluation of test data. The procedures are related to the above questions, usually addressed by most testing criteria and tools. A tool, named GPTesT, is described and results from an experiment using this tool are also presented. The results show the applicability of our approach and allow comparison with mutation testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.