Abstract
Evolutionary studies using single nucleotide polymorphisms (SNPs) have separated Bordetella pertussis isolates into six major clusters, with recent isolates forming cluster I. The expansion of cluster I isolates was characterised by changes in genes encoding antigenic components in acellular vaccines, including pertactin (Prn). Here, we determined the initial emergence of the pertussis toxin promoter allele, ptxP3, from an evolutionary perspective. This allele was previously shown in a study from the Netherlands to be associated with increased pertussis toxin production as a result of a single base mutation in the ptxP. The ptxP region of 313 worldwide isolates was sequenced, including 208 isolates from Australia collected over a 40year period. Eight alleles were identified, of which only two predominated: ptxP1 and ptxP3. One novel allele was also found. ptxP3 was only found in SNP cluster I of B. pertussis and its emergence is concurrent with the change to the non-vaccine prn2 allele. Our results suggest that the globally distributed cluster I of B. pertussis has the ability to evade vaccine induced selection pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.