Abstract
Post-combustion CO2 capture (PCC) plant for a typical 600 MW natural gas fueled thermal power plant was designed as a trade-off between operability and mitigation of the efficiency penalty. Two modified PCC plant configurations with low efficiency penalty were selected. The methodology for designing PCC plants was adapted by incorporating design constraints based on operability and the construction of absorbers. This was applied in sizing the equipment of the plants. Two configurations of absorbers were analyzed based on flue gas flow rate at full-load condition and at time-average of an assumed load variation of a power plant operating flexibly. It was found that the absorber designed at time-average load provided a reduction of approximately 4% in the purchased cost of absorbers. The performance of the designed plants under power plant load variation, flow maldistribution and variable capture ratio was analyzed using off-design condition simulations. The absorber designed at full-load condition was found to lead to lower reboiler duty in order to maintain a similar capture rate to that of the other absorber during part-load operation. Dynamic simulations of the plants with the existing control structure were performed under similar power plant load variations to confirm their operability, and suggestions for selecting one of them were presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.