Abstract

Single-chain repressor RR(Tres) is a derivative of bacteriophage 434 repressor, which contains covalently dimerized DNA-binding domains (amino acids 1-69) of the phage 434 repressor. In this single-chain molecule, the wild type domain R is connected to the mutant domain R(TRES) by a recombinant linker in a head-to-tail arrangement. The DNA-contacting amino acids of R(TRES) at the -1, 1, 2, and 5 positions of the a3 helix are T, R, E, S respectively. By using a randomized DNA pool containing the central sequence -CATACAAGAAAGNNNNNNTTT-, a cyclic,in vitro DNA-binding site selection was performed. The selected population was cloned and the individual members were characterized by determining their binding affinities to RR(Tres) The results showed that the optimal operators contained the TTAC or TTCC sequences in the underlined positions as above, and that the Kd values were in the 1 x 10(-12) mol/L-1 x 10(11) mol/L concentration range. Since the affinity of the natural 434 repressor to its natural operator sites is in the 1 x 10(-9) mol/L range, the observed binding affinity increase is remarkable. It was also found that binding affinity was strongly affected by the flanking bases of the optimal tetramer binding sites, especially by the base at the 5' position. We constructed a new homodimeric single-chain repressor R(TRES)R(TRES) and its DNA-binding specificity was tested by using a series of new operators designed according to the recognition properties previously determined for the R(TREs) domain. These operators containing the consensus sequenceGTAAGAAARNTTACN orGGAAGAAARNTTCCN (R is A or G) were recognized by R(TRES)R(TRES) specifically, and with high binding affinity. Thus, by using a combination of random selection and rational design principles, we have discovered novel, high affinity protein-DNA interactions with new specificity. This method can potentially be used to obtain new binding specificity for other DNA-binding proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.