Abstract

Automated diagnostic algorithms are used in implantable cardioverter-defibrillators (ICD's) to detect abnormal heart rhythms. Algorithms misdiagnose and improved specificity is needed to prevent inappropriate therapy. Knowledge engineering (KE) and artificial intelligence (AI) could improve this. A pilot study of KE was performed with artificial neural network (ANN) as AI system. A case note review analysed arrhythmic events stored in patients ICD memory. 13.2% patients received inappropriate therapy. The best ICD algorithm had sensitivity 1.00, specificity 0.69 (p<0.001 different to gold standard). A subset of data was used to train and test an ANN. A feed-forward, back-propagation network with 7 inputs, a 4 node hidden layer and 1 output had sensitivity 1.00, specificity 0.71 (p<0.001). A prospective study was performed using KE to list arrhythmias, factors and indicators for which measurable parameters were evaluated and results reviewed by a domain expert. Waveforms from electrodes in the heart and thoracic bio-impedance; temperature and motion data were collected from 65 patients during cardiac electrophysiological studies. 5 incomplete datasets were due to technical failures. We concluded that KE successfully guided selection of parameters and ANN produced a usable system and that complex data collection carries greater risk of technical failure, leading to data loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.