Abstract

Bacillus thuringiensis has been widely used as a biological control agent against insect pests. Additionally, nematicidal strains have been under investigation. In this report, 310 native strains of B. thuringiensis against Caenorhabditis elegans were tested. Only the LBIT-596 and LBIT-107 strains showed significant mortality. LC50s of spore-crystal complexes were estimated at 37.18 and 31.89μg/mL for LBIT-596 and LBIT-107 strains, respectively, while LC50s of partially purified crystals was estimated at 23.76 and 20.25μg/mL for LBIT-596 and LBIT-107, respectively. The flagellin gene sequence and plasmid patterns indicated that LBIT-596 and LBIT-107 are not related to each other. Sequences from internal regions of a cry5B and a cyt1A genes were found in the LBIT-596 strain, while a cry21A, a cry14A and a cyt1A genes were found in the LBIT-107 strain. Genome sequence of the LBIT-107 strain showed new cry genes, along with other virulence factors, hence, total nematicidal activity of the LBIT-107 strain may be the result of a multifactorial effect. The highlight of this contribution is that translocation of spore-crystal suspensions of LBIT-107 into tomato plants inoculated at their rhizosphere decreased up to 90% the number of galls of Meloidogyne incognita, perhaps the most important nematode pest in the world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.