Abstract

CD20 is a membrane protein with four integral membrane regions and a large extracellular loop between residues 142 and 187, which serves as a target binding region for rituximab (RTX) and most other anti-CD20 monoclonal antibodies. It is highly expressed in B-lymphoma cells and B lymphocytes and often serves as a target for immunotherapy. In this study, we developed single domain antibodies (sdAbs) for the sensitive detection of CD20. To achieve this, an immune sdAb library was prepared from llamas immunized with a fusion between the large loop from CD20 and Hoc, a highly antigenic protein from the T4 bacteriophage, (CD20-Hoc). By subtracting binders to recombinant Hoc during the biopanning, potential anti-CD20 sdAbs were selected, sequenced, and characterized for their binding affinity to CD20-Hoc fusion versus Hoc. Twenty five clones grouped into three different families based on CDR3 sequence were identified as potential CD20 binders. The binding kinetics of representative sdAbs from each class and RTX were evaluated by surface plasmon resonance (SPR). Most of the sdAbs that were evaluated show binding affinities to CD20-Hoc in the nM range, and class A sdAbs, exhibited ≥40-fold increase in affinity for CD20-Hoc versus Hoc. When the binding of the sdAbs to CD20 on SU-DHL-4 cells was evaluated by flow cytometry, only class A sdAbs displayed strong binding to CD20 and recognized DHL cells in a concentration dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.