Abstract

There is a critical need for the development of more potent inhibitors for osteoarthritis (OA) therapy given the poor life quality of arthritis patients. Aggrecanase ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) is an established drug target identified for osteoarthritis. In this study, we evolved and characterized two new DNA aptamer inhibitors of ADAMTS-5, namely apt21 and apt25. The aptamers exhibited nanomolar binding affinity and high specificity against ADAMTS-5. KD values of apt21 and apt25 were determined by the Enzyme-linked Oligonucleotide Assay (ELONA) at 1.54 ± 0.16 nM and 1.79 ± 0.08 nM, respectively. Circular Dichroism (CD) analysis demonstrated that both aptamers formed monovalent cation dependent G-quadruplex structures. Calcium ions did not affect the binding of the aptamers to ADAMTS-5. The inhibitory effects of apt21 and apt25 on ADAMTS-5 were evaluated by the Förster Resonance Energy Transfer (FRET) assay, in which IC50 values of apt21 and apt25 were estimated at 52.76 ± 6.70 μM and 61.14 ± 9.67 μM, respectively. These two aptamers are the first DNA G-quadruplex aptamers demonstrated to inhibit ADAMTS-5 and could have value for OA therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.