Abstract

We study variants of the vertex disjoint paths problem in plane graphs where paths have to be selected from given sets of paths. We investigate the problem as a decision, maximization, and routing-in-rounds problem. Although all considered variants are NP-hard in planar graphs, restrictions on the locations of the terminals on the outer face of the given planar embedding of the graph lead to polynomially solvable cases for the decision and maximization versions of the problem. For the routing-in-rounds problem, we obtain a p-approximation algorithm, where p is the maximum number of alternative paths for a terminal pair, when restricting the locations of the terminals to the outer face such that they appear in a counterclockwise traversal of the boundary as a sequence s1,s2,',sk,tπ1,tπ2,',tπk for some permutation π. © 2015 Wiley Periodicals, Inc.NETWORKS, Vol. 662, 136-144 2015

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.