Abstract

Principal component analysis (PCA) is a well-known tool in multivariate statistics. One significant challenge in using PCA is the choice of the number of principal components. In order to address this challenge, we propose distribution-based methods with exact type 1 error controls for hypothesis testing and construction of confidence intervals for signals in a noisy matrix with finite samples. Assuming Gaussian noise, we derive exact type 1 error controls based on the conditional distribution of the singular values of a Gaussian matrix by utilizing a post-selection inference framework, and extending the approach of [Taylor, Loftus and Tibshirani (2013)] in a PCA setting. In simulation studies, we find that our proposed methods compare well to existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.