Abstract
In this paper, we apply the model selection approach based on Likelihood Ratio (LR) tests developed in Vuong (1985) to the problem of choosing between two normal linear regression models which are not nested in each other. First we compare our model selection procedure to other model selection criteria. Then we explicitly derive the procedure when the competing linear models are non-nested and neither one is correctly specified. Some simplifications are seen to arise when both models are contained in a larger correctly specified linear regression model, or when at least one competing linear model is correctly specified. A comparison of our model selection tests and previous non-nested hypothesis tests concludes the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.