Abstract

Carbon capture and storage (CCS) is one of the quickest and most effective solutions for reducing carbon emissions. The majority of subsurface storage occurs in saline aquifers, for which geological information is lacking which in turn results in geological uncertainty. To evaluate uncertainty in CO2 injection projections, the use of multiple geological realizations (GRs) has been practiced very commonly. In this approach, hundreds or thousands of high-resolution GRs is used that quickly becomes computationally expensive. This issue can be addressed with representative geological realizations (RGRs) that preserve the uncertainty domain of the ensemble GRs. In this study, we propose the use of unsupervised machine learning (UML) frameworks, including dissimilarity measurement, dimensionality reduction, clustering and sampling algorithms ta select a predetermined number of RGRs. We compare the simulation outputs of the RGR sets and the ensemble using the Kolmogorov–Smirnov (KS) test to select the best UML. The UML frameworks and their associated selection processes are evaluated using a saline aquifer with a single CO2 injection well and 200 GRs with varying uncertain petrophysical characteristics. The best UML framework is selected to use only 5% of the GRs while maintaining the uncertainty domain of the ensemble GRs. In addition, the best UML framework is tested using a saline aquifer with three CO2 injection wells and varied GRs. The results show that our proposed UML framework can be used to choose RGRs, capturing the whole uncertainty domain. Our approach leads to a significant reduction in the computational cost associated with scenario testing, decision-making, and development planning for CO2 storage sites under geological uncertainty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call