Abstract
In this work, the use of gold and silver nanoshells was evaluated as a starting point for the establishment of colorimetric sensor platforms. The sensitivity and linearity of the nanoplatforms (SiO2 core–metallic shell nanoparticles) were assessed under the influence of the nanoshell configuration, color space, and light source illuminant. A computational procedure for selecting high-performance plasmonic colorimetric sensor platforms is described. The evaluation methodology involves considering five different color spaces and 15 different color components. By exploring crucial figures of merit for sensing, the performance of the plasmonic nanoplatforms was evaluated, exploring Mie theory. We determined that gold nanoshells are highly efficient on colorimetric sensing, while silver nanoshells are a better choice for spectroscopic sensors. Plasmonic nanoplatforms based on nanoshells with 10 nm SiO2 core radii and 5 nm thick Au shells presented sensitivity values up to 4.70RIU−1, considering the hue angle of the HSV color space. Color variation of up to 40% was observed, due to the adsorption of a 10 nm thick molecular layer on the gold nanoshell surface. In the search for advances in colorimetric biosensors, the optimization approach used in this work can be extended to different nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.