Abstract

In action recognition, bag of visual words based approaches have been shown to be successful, for which the quality of codebook is critical. In a large vocabulary of poses (visual words), some key poses play a more decisive role than others in the codebook. This paper proposes a novel approach for key poses selection, which models the descriptor space utilizing a manifold learning technique to recover the geometric structure of the descriptors on a lower dimensional manifold. A PageRank-based centrality measure is developed to select key poses according to the recovered geometric structure. In each step, a key pose is selected from the manifold and the remaining model is modified to maximize the discriminative power of selected codebook. With the obtained codebook, each action can be represented with a histogram of the key poses. To solve the ambiguity between some action classes, a pairwise subdivision is executed to select discriminative codebooks for further recognition. Experiments on benchmark datasets showed that our method is able to obtain better performance compared with other state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.