Abstract

The problem of estimating the number of hidden states in a hidden Markov model is considered. Emphasis is placed on cross-validated likelihood criteria. Using cross-validation to assess the number of hidden states allows to circumvent the well-documented technical difficulties of the order identification problem in mixture models. Moreover, in a predictive perspective, it does not require that the sampling distribution belongs to one of the models in competition. However, computing cross-validated likelihood for hidden Markov models for which only one training sample is available, involves difficulties since the data are not independent. Two approaches are proposed to compute cross-validated likelihood for a hidden Markov model. The first one consists of using a deterministic half-sampling procedure, and the second one consists of an adaptation of the EM algorithm for hidden Markov models, to take into account randomly missing values induced by cross-validation. Numerical experiments on both simulated and real data sets compare different versions of cross-validated likelihood criterion and penalised likelihood criteria, including BIC and a penalised marginal likelihood criterion. Those numerical experiments highlight a promising behaviour of the deterministic half-sampling criterion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.