Abstract
The authors derive a method for selecting exemplars for training a multilayer feedforward network architecture to estimate an unknown (deterministic) mapping from clean data, i.e., data measured either without error or with negligible error. The objective is to minimize the data requirement of learning. The authors choose a criterion for selecting training examples that works well in conjunction with the criterion used for learning, here, least squares. They proceed sequentially, selecting an example that, when added to the previous set of training examples and learned, maximizes the decrement of network squared error over the input space. When dealing with clean data and deterministic relationships, concise training sets that minimize the integrated squared bias (ISB) are desired. The ISB is used to derive a selection criterion for evaluating individual training examples, the DISB, that is maximized to select new exemplars. They conclude with graphical illustrations of the method, and demonstrate its use during network training. Experimental results indicate that training upon exemplars selected in this fashion can save computation in general purpose use as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.