Abstract

In this study, a multifaceted approach for selecting the suitable candidates for bioaugmentation of activated sludge (AS) that supports leachate treatment was used. To determine the exploitation of 10 bacterial strains isolated from the various matrices for inoculating the AS contaminated with the Kalina pond leachate (KPL), their degradative potential was analyzed along with their aptitude to synthesize compounds improving remediation of pollutants in wastewater and ability to incorporate into the AS flocs. Based on their capability to degrade aromatic compounds (primarily catechol, phenol, and cresols) at a concentration of 1 mg/mL and survive in 12.5% of the KPL, Pseudomonas putida OR45a and P. putida KB3 can be considered to be the best candidates for bioaugmentation of the AS among all of the bacteria tested. Genomic analyses of these two strains revealed the presence of the genes encoding enzymes related to the metabolism of aromatic compounds. Additionally, both microorganisms exhibited a high hydrophobic propensity (above 50%) and an ability to produce biosurfactants as well as high resistance to ammonium (above 600 µg/mL) and heavy metals (especially chromium). These properties enable the exploitation of both bacterial strains in the bioremediation of the AS contaminated with the KPL.

Highlights

  • Landfilling is currently the most common and the cheapest way to eliminate household, commercial, and industrial solid waste worldwide

  • S5, Stenotrophomonas maltophilia KB2, Pseudomonas putida N6, Pseudomonas sp., Pseudomonas putida mt-2, and Pseudomonas fluorescens towards a variety of organic compounds has previously been reported in the literature [36,37,38], whereas four strains: Pseudomonas putida OR45a, Pseudomonas putida KB3, Glutamicibacter soli OR45b, and Rhodococcus erythropolis KB4 have only recently been isolated from the environment and are presented here for the first time

  • Selecting robust bacterial strains for bioaugmentation should depend on our knowledge about their catabolic potential, and about their ability to survive in the activated sludge (AS)

Read more

Summary

Introduction

Landfilling is currently the most common and the cheapest way to eliminate household, commercial, and industrial solid waste worldwide. A major drawback of this practice is the generation of heavily polluted leachate, which can contaminate the soil, groundwater, and surface water in the immediate vicinity of the landfill with hazardous substances [1,2]. Owing to the frequent discharge of the landfill leachate to the wastewater treatment plants (WWTPs), a variety of dynamically developing biological technologies in the world, including modern biological membrane reactors and bioelectrochemical systems, are implemented [3,4,5,6]. In the vast majority of WWTPs in Poland the landfill leachate treatment is still performed with the application of conventional activated sludge (AS) technology. Implementing them for treating landfill leachate is extremely challenging, especially in the case of mature or old leachate due to its complex composition, fluctuations of dissolved organic carbon, and potential toxicity [8,9,10]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.