Abstract
AbstractRelaxed clock models are fundamental in Bayesian clock dating, but a single distribution characterizing the clock variation is typically selected. Hence, I developed a new reversible-jump Markov chain Monte Carlo (rjMCMC) algorithm for drawing posterior samples between the independent lognormal (ILN) and independent gamma rates (IGR) clock models. The ability of the rjMCMC algorithm to infer the true model was verified through simulations. I then applied the algorithm to the Mesozoic bird data previously analyzed under the white noise (WN) clock model. In comparison, averaging over the ILN and IGR models provided more reliable estimates of the divergence times and evolutionary rates. The ILN model showed slightly better fit than the IGR model and much better fit than the autocorrelated lognormal (ALN) clock model. When the data were partitioned, different partitions showed heterogeneous model fit for ILN and IGR clocks. The implementation provides a general framework for selecting and averaging relaxed clock models in Bayesian dating analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.