Abstract

The aim of the present paper is to discuss some recent results concerning the behavior of low-dimensional materials under strain. This concerns the electrical conductivity calculations of 1D structures under strain, within the Hubbard model, as well as ab initio investigations of phonon, electron-phonon, and superconducting properties of doped graphene and MgB2 monolayer. Two different experimental approaches to strain engineering in graphene have been considered regarding local strain engineering on monolayer flakes of graphene using atomic force microscopy and dynamic plowing lithography technique as well as the effects of mechanical straining on liquid phase exfoliated graphene and change of sheet resistance of graphene films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call