Abstract

BackgroundAnalysis of key therapeutic targets such as epidermal growth factor receptor (EGFR) in clinical tissue samples is typically done by immunohistochemistry (IHC) and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies.MethodsA mass spectrometry-based Selected Reaction Monitoring (SRM) assay for the EGFR protein (EGFR-SRM) was developed utilizing the Liquid Tissue®-SRM technology platform. Tissue culture cells (n = 4) were analyzed by enzyme-linked immunosorbent assay (ELISA) to establish quantitative EGFR levels. Matching formalin fixed cultures were analyzed by the EGFR-SRM assay and benchmarked against immunoassay of the non-fixed cultured cells. Xenograft human tumor tissue (n = 10) of non-small cell lung cancer (NSCLC) origin and NSCLC patient tumor tissue samples (n = 23) were microdissected and the EGFR-SRM assay performed on Liquid Tissue lysates prepared from microdissected tissue. Quantitative curves and linear regression curves for correlation between immunoassay and SRM methodology were developed in Excel.ResultsThe assay was developed for quantitation of a single EGFR tryptic peptide for use in FFPE patient tissue with absolute specificity to uniquely distinguish EGFR from all other proteins including the receptor tyrosine kinases, IGF-1R, cMet, Her2, Her3, and Her4. The assay was analytically validated against a collection of tissue culture cell lines where SRM analysis of the formalin fixed cells accurately reflects EGFR protein levels in matching non-formalin fixed cultures as established by ELISA sandwich immunoassay (R2 = 0.9991). The SRM assay was applied to a collection of FFPE NSCLC xenograft tumors where SRM data range from 305amol/μg to 12,860amol/μg and are consistent with EGFR protein levels in these tumors as previously-reported by western blot and SRM analysis of the matched frozen tissue. In addition, the SRM assay was applied to a collection of histologically-characterized FFPE NSCLC patient tumor tissue where EGFR levels were quantitated from not detected (ND) to 670amol/μg.ConclusionsThis report describes and evaluates the performance of a robust and reproducible SRM assay designed for measuring EGFR directly in FFPE patient tumor tissue with accuracy at extremely low (attomolar) levels. This assay can be used as part of a complementary or companion diagnostic strategy to support novel therapies currently under development and demonstrates the potential to identify candidates for EGFR-inhibitor therapy, predict treatment outcome, and reveal mechanisms of therapeutic resistance.

Highlights

  • Many human cancers are associated with over-expressed epidermal growth factor receptor (EGFR) [1]

  • Immunoanalysis of non-fixed cells Four (4) tissue culture cell lines suspected of expressing EGFR were analyzed by immunoassay to provide quantitative benchmarks to experimentally assess the ability of the mass spectrometry-based Selected Reaction Monitoring (SRM) assay for the EGFR protein (EGFR-SRM assay) to precisely reflect the amount of total EGFR protein per μg of total protein in formalin fixed biological samples

  • The EGFR standards were assayed in triplicate with good reproducibility (%CV range: 5.0 to 31.8) across serial dilutions that ranged in concentration from 15.6 pg/well (0.081 pg) in assay dilution buffer to 250 pg/well (0.891 pg) in assay dilution buffer (Figure 1A)

Read more

Summary

Introduction

Many human cancers are associated with over-expressed epidermal growth factor receptor (EGFR) [1]. Analysis of EGFR at the protein level, in clinical tissue samples (with respect to patient tumor profiling and targeted therapy) is typically done by immunohistochemistry (IHC) that is only subjectively quantitative through a narrow dynamic range. Recent reports suggest EGFR protein levels may provide some predictive response data to gefitinib and cetuximab in NSCLC patients but that the choice of diagnostic antibody and IHC methodology is paramount to predicting response and outcome to specific therapies [6,7]. Analysis of key therapeutic targets such as epidermal growth factor receptor (EGFR) in clinical tissue samples is typically done by immunohistochemistry (IHC) and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call