Abstract

AbstractChitosan and poly(vinyl alcohol) (PVA) were used to form a semi‐interpenetrating polymeric network with glutaraldehyde as the cross‐linker. The molecular weight and degree of deacetylation of the chitosan were 612 kDa and 72 %, respectively. The chemical bonds formed by the cross‐linking reaction and transition of these bonds in different pH media were investigated. The gelation property of the chitosan–PVA pregel solution and mechanical properties of the hydrogel were studied. The FTIR spectra of the hydrogel before and after swelling at pH 3 and pH 7 indicated formation of Schiff's base (CN) and NH3+. They also showed pH‐induced transition of CN to CN, and NH3+ to NH2, as well as the instability of the Schiff's base. The chitosan is essential for hydrogel formation through Schiff's base reaction between the amino groups of the chitosan and the aldehyde groups of the glutaraldehyde. The addition of PVA improved the mechanical properties of the hydrogel. However, PVA tends to leach out at longer swelling times in the acidic medium due to hydrolysis of the gel networks, Schiff's base. Copyright © 2004 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.