Abstract
High water content usually contradicts the mechanics for hydrogels, and achieving both characteristics is extremely challenging. Herein, a novel confined-chain-aggregation (CCA) strategy is developed to fabricate ultrastrong and tough hydrogels without sacrificing their inherent water capacity. Based on the popular polyacrylamide/alginate (PAAm/Alg) system with a double network (DN), a poor solvent exchange is induced once PAAm is fully cross-linked but prior to ionic cross-linking of alginate. In this case, the alginate chains are restricted by the chemical PAAm network and undergo a confined-chain aggregation, which guarantees an interpenetrating network of both polymers and simultaneously generates micron-scale aggregates. In addition, after the subsequent water uptake, the accompanying formation of hydrogen bonds and metal-ligand coordination stabilizes the newly formed alginate aggregates, serving as large-scale cross-linking zones. However, the PAAm chains are anchored by the preformed cross-linking points and convert back to the uniformly distributed, high-water-content state, achieving a selected phase separation in a DN system. The combined CCA and hybrid cation cross-linking method gives mechanical strength and toughness to the PAAm/Alg hydrogels to reach approximately 30 and 5 times the traditional methods, respectively. This investigation provides a general strategy for the development of a new generation of double-network hydrogels, which will expand their application as structural materials for cartilage and soft robotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.