Abstract

We introduce a new ansatz to compute hyperfine coupling constants of selected nuclei at the level of second-order Møller-Plesset perturbation (MP2) and double-hybrid density functional theory with reduced computational effort, opening the route to the analyis of hyperfine coupling constants of large molecular structures. Our approach is based on a reformulation of the canonical MP2 term in atomic orbitals, thus exploiting the locality of electron correlation. We show that a perturbation-including integral screening reduces the scaling behavior of the number of significant two-electron integrals to sublinear. This selected-nuclei approach allows for an efficient computation within scaled-opposite spin (SOS) RI-MP2 on massively parallelized architectures such as graphical processor units (GPUs), thus enabling studies on the influence of the environment on hyperfine coupling constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.