Abstract

The research conducted on animal models of Alzheimer's disease (AD) has provided valuable information about the pathogenesis of this disease and associated behavioral and cognitive deficits as well as the disease-associated anatomical and histopathological lesions of the brain. Transgenic technologies have enabled the creation of animal models based on mutations in APP, MAPT, presenilin genes, tau protein and apoE. Due to economic reasons studies are mainly conducted on mice. Their brain tissue, depending on the mutation, is characterized by histopathological changes, such as the presence of amyloid plaques, tau protein deposits and dystrophic neurites, gliosis, hippocampal atrophy and amyloid accumulation in vessels. Animal cognitive impairment and behavior, which can be demonstrated in behavioral tests, primarily relate to the working and reference memory, alternation and anxiety. Unfortunately, despite the various modifications specific to AD in the genome of animals, scientists have failed to create an animal model characterized by all the pathological changes that can occur in Alzheimer's disease. Nevertheless, the role of transgenic animals is undeniable, both in research on AD neuropathology and for testing new therapies, such as immunotherapy. Despite the occurrence of abundant Alzheimer's disease mice models this article is dedicated to selected models with mutations in the APP, MAPT and presenilin genes and their application for behavioral studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.