Abstract
In this study, urban road dust (URD) samples were collected in two populated agglomerations of Wrocław and Katowice (Lower and Upper Silesia) in Poland. Both the total concentrations of URD-bound Mn, Ni, Cu, Zn, As, Rb, Ba, Cr, Mg, and Al and concentrations of their water-soluble fraction were determined. The contamination characteristics and health risk related to these elements were assessed. Contamination level assessment was done by Pollution Load Index (PLI), which indicated much higher pollution of Katowice agglomeration than Wrocław. The enrichment factor values (EF) showed that the most elements in both Katowice and Wrocław orginated from anthropogenic sources. The calculations of geo-accumulation index (Igeo) showed that Zn and As are the key pollutants in Katowice; and in the Wrocław region, Cu, Zn, Cr, and Ni are. The principle component analysis (PCA) and correlation analysis provide information about the potential sources of metals. Additionally, a positive matrix factorization (PMF) was performed and four factors in PMF analysis were found and then interpreted by comparing to the source profiles. Three contamination sources were revealed: fossil fuel combustion, road traffic and industrial emissions. Although the main source of studied metals in Lower Silesia is road traffic, in Upper Silesia, domestic heating with the use of hard and brawn coal and industrial activity predominates. Human exposure to individual toxic metals through road dust was assessed for both children and adults. By calculating the average daily dose (ADD) via ingestion, inhalation, and dermal contact, it was found that ingestion and then dermal contact were the greatest exposure pathways for humans in Katowice and Wrocław. Children had greater health risks than adults. According to the health risk assessment, the overall non-carcinogenic risks in both urban areas was rather low. The only exception was As bound to urban road dust in Katowice agglomeration, which indicates risk for children when ingested. The total excess cancer risk (ECR) was also lower than the acceptable level (10−6–10−4) for both adults and children, although ECR for Katowice was closer to this limit.
Highlights
Poland is one of the three countries with the worst air quality in Europe [1]
Sites located in experience low anthropogenic influencehigh compared to Katowice
The results clearly indicate that the greatest health risk is caused by urban road dust (URD) penetrating through the digestive tract, as shown in Tables 13 and 14
Summary
Poland is one of the three countries with the worst air quality in Europe [1]. Thirty-three of the 50 most polluted European cities of fine particulate matter (PM2.5) are in Poland [2]. Many previous scientific papers focused on the chemical composition and origin of PM in various cities in Poland [3,4,5,6,7,8,9,10]. Atmosphere 2020, 11, 290 concentrations, including carcinogenic, potentially carcinogenic or toxic compounds results mainly from burning of fossil fuels. This problem is present all year round and applies to the whole of Poland
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.