Abstract
The product ion branching ratios and rate coefficients have been measured using a selected ion flow tube (SIFT) at 298 K for the bimolecular reactions of cyclic-C5F8 with several atomic and molecular cations. The majority of reactions occur at the collisional rate calculated by the modified average dipole orientation theory, with the exception of H2O+ for which the reaction efficiency is only 55%. Apart from H2O+ and N+, the similarity of the product ion branching ratios determined from threshold photoelectron photoion coincidence (TPEPICO) and ion-molecule data suggests that long-range electron transfer is the dominant mechanism for reactions involving ions with recombination energies between 12 and 17 eV. For N+, the product ion branching ratios are very different to those produced by photoionisation; this result may be explained if some of the N-atom products are formed electronically excited. The onset of an ionisation signal of c-C5F8 measured by TPEPICO spectroscopy occurs at 12.25 +/- 0.05 eV. This is much higher than the value of the first adiabatic ionisation energy determined from electron ionisation (11.24 +/- 0.10 eV), He (I) photoionisation (11.30 +/- 0.05 eV), and an independent high resolution threshold photoelectron spectrum (11.237 +/- 0.002 eV). The ground electronic state of c-C5F8+ has very weak intensity under threshold electron conditions. The TPEPICO spectrum of c-C5F8 recorded from 12-23 eV shows detection of the parent ion and the daughter ions C4F6+ and C5F7+, with their appearance energies increasing in this order. Ion yield curves and branching ratios have been determined. Using Gaussian 03, the enthalpy of formation of c-C5F8 at 298 K has been determined to be -1495 kJ mol(-1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.