Abstract
Tryptase, the major mast cell product, is considered to play an important role in airway inflammation and hyperresponsiveness. Tryptase produces different, sometimes opposite, effects on airway responsiveness (bronchoprotection and/or airway contraction). This study was designed to examine the effect of human lung tryptase and activation of protease-activated receptor (PAR)-2 by synthetic activated peptide (AP) SLIGKV-NH(2) on Ca(2+) signaling in human airway smooth muscle (HASM) cells. Immunocytochemistry revealed that PAR-2 was expressed by HASM cells. Tryptase (7.5--30 mU/ml) induced a concentration-dependent transient relative rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) that reached 207 +/- 32 nM (n = 10) measured by indo 1 spectrofluorometry. The protease inhibitors leupeptin or benzamidine (100 microM) abolished tryptase-induced [Ca(2+)](i) increase. Activation of PAR-2 by AP (1-100 microM) also induced a concentration-dependent transient rise in [Ca(2+)](i), whereas the reverse peptide produced no effect. There was a homologous desensitization of the [Ca(2+)](i) response on repeated stimulation with tryptase or AP. U-73122, a specific phospholipase C (PLC) antagonist, xestospongin, an inositol trisphosphate (IP(3))-receptor antagonist, or thapsigargin, a sarcoplamic Ca(2+)-ATPase inhibitor, abolished tryptase-induced [Ca(2+)](i) response, whereas Ca(2+) removal, in the additional presence of EGTA, had no effect. Calphostin C, a protein kinase C inhibitor, increased PAR-2 [Ca(2+)](i) response. Our results indicate that tryptase activates a [Ca(2+)](i) response, which appears as PAR-2 mediated in HASM cells. Signal transduction implicates the intracellular Ca(2+) store via PLC activation and thus via the IP(3) pathway. This study provides evidence that tryptase, which is increasingly recognized as an important mediator in airway inflammation and hyperresponsiveness, is also a potent direct agonist at the site of airway smooth muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.