Abstract

Intermittent hypoxia (IH), associated with obstructive sleep apnea, initiates adaptive physiological responses in a variety of organs. Little is known about its influence on diaphragm. IH was simulated by exposing rats to alternating 15-s cycles of 5% O2 and 21% O2 for 5 min, 9 sets/h, 8 h/day, for 10 days. Controls did not experience IH. Diaphragms were excised 20-36 h after IH. Diaphragm bundles were studied in vitro or analyzed for myosin heavy chain isoform composition. No differences in maximum tetanic stress were observed between groups. However, peak twitch stress (P < 0.005), twitch half-relaxation time (P < 0.02), and tetanic stress at 20 or 30 Hz (P < 0.05) were elevated in IH. No differences in expression of myosin heavy chain isoforms or susceptibility to fatigue were seen. Contractile function after 30 min of anoxia (95% N2-5% CO2) was markedly preserved at all stimulation frequencies during IH and at low frequencies after 15 min of reoxygenation. Anoxia-induced increases in passive muscle force were eliminated in the IH animals (P < 0.01). These results demonstrate that IH induces adaptive responses in the diaphragm that preserve its function in anoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.