Abstract

Cyclic nucleotide-induced relaxation of maximally activated arterial smooth muscle has two phases. 1) The initial relaxation transient is typically characterized by a rapid reduction in force associated with brief reductions in myoplasmic Ca(2+) concentration ([Ca(2+)](i)) and myosin regulatory light chain (MRLC) phosphorylation on serine (Ser)-19 (Ser(19)). 2) The sustained inhibitory response is typically associated with Ser(16) phosphorylation of heat shock protein 20 (HSP20) without sustained reductions in [Ca(2+)](i) or MRLC phosphorylation. We investigated whether the extent of Ser(16)-HSP20 phosphorylation quantitatively correlated with the sustained inhibitory response. With addition of nitroglycerin to histamine-stimulated swine carotid media, the initial relaxation transient was associated with a decrease in MRLC phosphorylation without an increase in Ser(16)-HSP20 phosphorylation. During the sustained phase of nitroglycerin-induced relaxation and during force redevelopment induced by washout of nitroglycerin in the continued presence of histamine, the level of Ser(16)-HSP20 phosphorylation, but not MRLC phosphorylation, correlated with inhibition of force. Forskolin, which increases cAMP concentration, also induced a sustained inhibitory response that was associated with increases in Ser(16)-HSP20 phosphorylation without reductions in MRLC phosphorylation levels. Forskolin increased Ser(16)-HSP20 phosphorylation to a greater extent and inhibited force more completely than that observed with nitroglycerin. Increases in Ser(16)-HSP20 phosphorylation correlated with the degree of force inhibition regardless of whether the relaxation was induced by nitroglycerin or forskolin. These data are consistent with the hypothesis that Ser(16)-HSP20 phosphorylation may be a cyclic nucleotide-dependent, yet MRLC phosphorylation-independent, inhibitor of smooth muscle contractile force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call