Abstract
Quantum state tomography (QST) refers to any method that allows one to reconstruct the accurate representation of a quantum system based on data obtainable from an experiment. In this paper, we concentrate on theoretical methods of quantum tomography, but some significant experimental results are also presented. Due to a considerable body of literature and intensive ongoing research activity in the field of QST, this overview is restricted to presenting selected ideas, methods, and results. First, we discuss tomography of pure states by distinguishing two aspects—complex vector reconstruction and wavefunction measurement. Then, we move on to the Wigner function reconstruction. Finally, the core section of the article is devoted to the stroboscopic tomography, which provides the optimal criteria for state recovery by including the dynamics in the scheme. Throughout the paper, we pay particular attention to photonic tomography, since multiple protocols in quantum optics require well-defined states of light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.